SISTEM REKOMENDASI KELAYAKAN LINK SCADA MENGGUNAKAN DECISION TREE C4.5

  • Taufiq Dwi Cahyono
  • Rizki Eka Pratama

Abstract

SCADA 20 KV merupakan layanan pengatur beban di Gardu Induk (GI), Infrastruktur jaringan SCADA 20 KV terdiri dari beberapa komponen yang sangat rentan terhadap gangguan, yang dapat mengakibatkan hilangnya kontrol pada suatu GI. Oleh karena itu, sebuah tautan cadangan telah dibuat dengan tujuan untuk menyediakan cadangan jika terjadi gangguan pada tautan utama. Tautan cadangan ini akan menggantikan tautan utama yang mengalami gangguan, dan sebaliknya. Pentingnya sebuah tautan SCADA yang dapat diandalkan memunculkan kebutuhan akan sistem rekomendasi guna menilai kelayakan tautan cadangan SCADA 20 KV. Algoritma Decision Tree C4.5 digunakan untuk menyusun rekomendasi ini. Sistem hasil keputusan yang dihasilkan sangat terperinci dan dapat diuraikan melalui representasi pohon keputusan. Hasil rekomendasi akan menunjukkan apakah tautan tersebut layak atau tidak layak untuk digunakan.

References

[1] M. Sujatha and C. D. Jaidhar, “Classification of Soil Fertility using Machine Learning-based Classifier,” in ICSCCC 2021 - International Conference on Secure Cyber Computing and Communications, Institute of Electrical and Electronics Engineers Inc., May 2021, pp. 138–143. doi: 10.1109/ICSCCC51823.2021.9478169.
[2] S. Bahassine, A. Madani, M. Al-Sarem, and M. Kissi, “Feature selection using an improved Chi-square for Arabic text classification,” Journal of King Saud University - Computer and Information Sciences, vol. 32, no. 2, pp. 225–231, Feb. 2020, doi: 10.1016/j.jksuci.2018.05.010.
[3] G. N. Awaludin et al., “Comparison of Decision Tree C4.5 Algorithm with K-Nearest Neighbor (KNN) Algorithm in Hadith Classification,” in 6th International Conference on Computing, Engineering, and Design, ICCED 2020, Institute of Electrical and Electronics Engineers Inc., Oct. 2020. doi: 10.1109/ICCED51276.2020.9415796.
[4] C. Deng and Z. H. Ma, “Research on C4.5 Algorithm Optimization for User Churn,” in 2021 IEEE International Conference on Computer Science, Artificial Intelligence and Electronic Engineering, CSAIEE 2021, Institute of Electrical and Electronics Engineers Inc., Aug. 2021, pp. 75–79. doi: 10.1109/CSAIEE54046.2021.9543367.
[5] K. Djouzi, K. Beghdad-Bey, and A. Amamra, “A new adaptive sampling algorithm for big data classification,” J Comput Sci, vol. 61, May 2022, doi: 10.1016/j.jocs.2022.101653.
[6] F. Aaboub, H. Chamlal, and T. Ouaderhman, “Analysis of the prediction performance of decision tree-based algorithms,” in 2023 International Conference on Decision Aid Sciences and Applications, DASA 2023, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 7–11. doi: 10.1109/DASA59624.2023.10286809.
[7] B. Zhang, “Tactical Decision System of Table Tennis Match based on C4.5 Decision Tree,” in Proceedings - 2021 13th International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2021, Institute of Electrical and Electronics Engineers Inc., Jan. 2021, pp. 632–635. doi: 10.1109/ICMTMA52658.2021.00146.
[8] C. J. D. Albia and D. Origines, “Selecting of Pet Adopters using C4.5 Decision Tree Model Algorithm,” in Proceedings - 2022 2nd International Conference in Information and Computing Research, iCORE 2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 30–35. doi: 10.1109/iCORE58172.2022.00025.
[9] P. Svefors et al., “Relative importance of prenatal and postnatal determinants of stunting: Data mining approaches to the MINIMat cohort, Bangladesh,” BMJ Open, vol. 9, no. 8, Aug. 2019, doi: 10.1136/bmjopen-2018-025154.
[10] A. F. A, “Penerapan Data Mining Untuk Mengetahui Tingkat Kekuatan Beton Yang Dihasilkan Dengan Metode Estimasi Menggunakan Linear Regression,” pp. 1–12, 2009.
Published
2023-10-31
How to Cite
Cahyono, T., & Pratama, R. (2023). SISTEM REKOMENDASI KELAYAKAN LINK SCADA MENGGUNAKAN DECISION TREE C4.5. Dinamika Informatika : Jurnal Ilmiah Teknologi Informasi, 15(2), 83-91. https://doi.org/10.35315/informatika.v15i2.9790
Section
Articles