IMPLEMENTASI METODE ASOSIASI APRIORI UNTUK MENGETAHUI POLA BELI KONSUMEN DAN REKOMENDASI PENEMPATAN PRODUK PADA SWALAYAN XYZ

  • Muchamad Taufiq Anwar Universitas Stikubank
  • Hindriyanto Dwi Purnomo Universitas Kristen Satya Wacana
  • Mega Novita Universitas PGRI Semarang
  • Clara Hetty Primasari Universitas Atma Jaya Yogyakarta

Abstract

Bisnis retail merupakan bisnis yang keberhasilannya sangat dipengaruhi oleh kemampuan untuk memahami perilaku konsumen dan kesigapan respons dari pemiliknya. Memahami konsumen dapat dilakukan dengan mempelajari data historis dari transaksi konsumen. Metode association rule-mining dalam Machine Learning dapat kita manfaatkan untuk menemukan tren pola perilaku beli konsumen yang menunjukkan keterkaitan antar produk / kategori produk. Penelitian ini bertujuan untuk menemukan tren asosiasi kategori produk serta memberikan rekomendasi penempatan produk (product placement layouting) dengan memaksimalkan exposure pembeli terhadap produk-produk yang terkait saat berbelanja suatu barang dengan harapan akan terjadi peningkatan penjualan. Sebanyak 12.760 data transaski digunakan untuk menemukan pola beli konsumen. Pola beli konsumen ini kemudian dijadikan dasar untuk memberikan rekomendasi penempatan produk untuk meningkatkan penjualan.

References

[1] I. Surjandari and A. Seruni, “Design of product placement layout in retail shop using market basket analysis,” Makara J. Technol., vol. 9, no. 2, pp. 43–47, 2010.
[2] D. L. Olson and D. Delen, Advanced data mining techniques. Springer Science & Business Media, 2008.
[3] P.-N. Tan, M. Steinbach, and V. Kumar, “Association analysis: basic concepts and algorithms,” in Introduction to Data mining, vol. 321321367, Addison-Wesley Boston, MA, 2005.
[4] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules between sets of items in large databases,” in Acm sigmod record, 1993, vol. 22, no. 2, pp. 207–216.
[5] X. Yuan, “An improved Apriori algorithm for mining association rules,” in AIP conference proceedings, 2017, vol. 1820, no. 1, p. 80005.
[6] K. Niu, H. Jiao, Z. Gao, C. Chen, and H. Zhang, “A developed apriori algorithm based on frequent matrix,” in ACM International Conference Proceeding Series, 2017, pp. 55–58.
[7] Y. Guo, M. Wang, and X. Li, “Application of an improved Apriori algorithm in a mobile e-commerce recommendation system,” Ind. Manag. Data Syst., vol. 117, no. 2, pp. 287–303, 2017.
[8] S. Bandyopadhyay, S. S. Thakur, and J. K. Mandal, “Product recommendation for E-commerce data using association rule and apriori algorithm,” in Advances in Intelligent Systems and Computing, 2019, vol. 749, pp. 585–593.
[9] C. L. Mao, S. L. Zou, and J. H. Yin, “Educational evaluation based on Apriori-Gen algorithm,” Eurasia J. Math. Sci. Technol. Educ., vol. 13, no. 10, pp. 6555–6564, 2017.
[10] N. A. Harun, M. Makhtar, A. A. Aziz, Z. A. Zakaria, F. S. Abdullah, and J. A. Jusoh, “The application of apriori algorithm in predicting flood areas,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 7, no. 3, pp. 763–769, 2017.
[11] Z. Niu, Y. Nie, Q. Zhou, L. Zhu, and J. Wei, “A brain-region-based meta-analysis method utilizing the Apriori algorithm,” BMC Neurosci., vol. 17, no. 1, p. 23, 2016.
[12] J. Yang, H. Huang, and X. Jin, “Mining web access sequence with improved apriori algorithm,” in 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), 2017, vol. 1, pp. 780–784.
[13] W. Chen, J. Yang, H.-L. Wang, Y.-F. Shi, H. Tang, and G.-H. Li, “Discovering Associations of Adverse Events with Pharmacotherapy in Patients with Non-Small Cell Lung Cancer Using Modified Apriori Algorithm,” Biomed Res. Int., vol. 2018, 2018.
[14] I. Jahangir, A. Hannan, S. Javed, and others, “Prediction of Dengue Disease through Data Mining by using Modified Apriori Algorithm,” in Proceedings of the 4th ACM International Conference of Computing for Engineering and Sciences, 2018, p. 5.
[15] Y. Yang, B. Gu, and T. Yoon, “Deeper understanding of Flaviviruses including Zika virus by using Apriori Algorithm and Decision Tree,” in MATEC Web of Conferences, 2016, vol. 69, p. 1005.
Published
2020-06-25
How to Cite
Anwar, M. T., Purnomo, H., Novita, M., & Primasari, C. (2020). IMPLEMENTASI METODE ASOSIASI APRIORI UNTUK MENGETAHUI POLA BELI KONSUMEN DAN REKOMENDASI PENEMPATAN PRODUK PADA SWALAYAN XYZ. Dinamik, 25(1), 29-38. https://doi.org/10.35315/dinamik.v25i1.7747
Section
Articles