Analisa Komparasi dengan Algoritma K-Nearest Neighbor (KNN) dan Support Vector Machine (SVM) untuk Prediksi Penyakit Jantung
Abstract
Tingkat keberhasilan deteksi penyakit jantung sangat bergantung pada akurasi model klasifikasi yang digunakan. Penelitian ini bertujuan membandingkan kinerja dua algoritma klasifikasi, yaitu K-Nearest Neighbor (KNN) dan Support Vector Machine (SVM), dalam mendeteksi penyakit jantung menggunakan dataset berjumlah 1025 sampel dengan dua kelas target, yakni sehat dan penyakit jantung. Proses pra-pemrosesan data meliputi pembersihan dan normalisasi fitur medis seperti usia, tekanan darah, serta kadar kolesterol. Evaluasi performa model dilakukan menggunakan metode Confusion Matrix, K-Fold Cross Validation, kurva Receiver Operating Characteristic (ROC), dan kurva Precision-Recall untuk mengukur akurasi, presisi, recall, serta keseimbangan antara presisi dan recall. Hasil pengujian menunjukkan bahwa algoritma KNN unggul dalam menghasilkan akurasi tinggi yaitu 99% dengan AUC ROC sempurna 1.00 dan presisi yang hampir konsisten sepanjang recall, sementara SVM menunjukkan performa stabil dengan akurasi 91%, AUC ROC 0.97, dan AP Precision-Recall sebesar 0.96. Penelitian ini menegaskan efektivitas KNN dalam menghasilkan prediksi penyakit jantung yang sangat akurat dengan potensi risiko overfitting pada parameter k kecil, sedangkan SVM memberikan kestabilan model dengan kemampuan generalisasi yang lebih baik. Temuan ini diharapkan dapat menjadi referensi dalam pemilihan algoritma klasifikasi yang sesuai untuk mendukung diagnosis penyakit jantung secara klinis.
References
[2] World Health Organization (WHO), "Cardiovascular diseases (CVDs) Fact Sheet," World Health Organization (WHO), 2021, Available : https://aho.org/fact-sheets/cardiovascular-diseases-cvds-fact-sheet/
[3] Kementerian Kesehatan Republik Indonesia, "Profil Kesehatan Indonesia 2023," Kementerian Kesehatan Republik Indonesia, Jakarta, 2024, Available : https://kemkes.go.id/id/profil-kesehatan-indonesia-2023
[4] A. H. Elmi, A. Abdullahi and M. A. Barre, "A machine learning approach to cardiovascular disease prediction with advanced feature selection," Indonesian Journal of Electrical Engineering and Computer Science, vol. XXXIII, no. 2, pp. 1030-1041, 2024, doi : http://doi.org/10.11591/ijeecs.v33.i2.pp1030-1041
[5] T. A. Assegie, "Support Vector Machine And K-Nearest Neighbor Based Liver Disease Classification Model," Indonesian Journal of Electronics, Electromedical, and Medical Informatics (IJEEEMI) , vol. III, no. 1, pp. 9-14, 2021, doi : https://doi.org/10.35882/ijeeemi.v3i1.2
[6] M. Bansal, A. Goyal and A. Choudhary, "A comparative analysis of K-Nearest Neighbor, Genetic, Support Vector Machine, Decision Tree, and Long Short Term Memory algorithms in machine learning," Decision Analytics Journal, vol. III, 2022, doi : https://doi.org/10.1016/j.dajour.2022.100071
[7] A. Y. Shdefat, N. Mostafa, Z. Al Arnaout, Y. Kotb and S. Alabed, "Optimizing HAR Systems: Comparative Analysis of Enhanced SVM and k NN Classifers," International Journal of Computational Intelligence Systems, vol. XVII, no. 1, pp. 1-32, 2024, doi : https://doi.org/10.1007/s44196-024-00554-0
[8] D. A. Anggoro and N. D. Kurnia, "Comparison of Accuracy Level of Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) Algorithms in Predicting Heart Disease," International Journal of Emerging Trends in Engineering Research, vol. VIII, no. 5, pp. 1689-1694, 2020, doi : https://doi.org/10.30534/ijeter/2020/
[9] S. Ay, E. Ekinci and Z. Garip, "A comparative analysis of meta heuristic optimization algorithms for feature selection on ML based classifcation of heart related diseases," The Journal of Supercomputing, vol. LXXIX, no. 11, pp. 11797-11826, 2023, doi : https://doi.org/10.1007/s11227-023-05132-3
[10] C. Mansoor, S. K. Chettri and H. Naleer, "Development of an efficient novel method for coronary artery disease prediction using machine learning and deep learning techniques," Technology and Health Care, vol. XXXII, no. 6, pp. 4545-4569, 2024, doi : https://doi.org/10.3233/thc-240740
[11] T. A. Assegie, "Heart disease prediction model with k-nearest neighbor algorithm," International Journal of Informatics and Communication Technology (IJ-ICT), vol. X, no. 3, pp. 225-230, 2021, doi : http://dx.doi.org/10.11591/ijict.v10i3.pp225-230
[12] Y. Sandhya, "Prediction of Heart Diseases using Support Vector Machine," International Journal for Research in Applied Science & Engineering Technology (IJRASET), vol. VIII, no. 11, pp. 126-135, 2020, doi : http://dx.doi.org/10.22214/ijraset.2020.2021
[13] E. I. Elsedimy, S. M. M. AboHashish and F. Algarni, "New cardiovascular disease prediction approach using support vector machine and quantum behaved particle swarm optimization," Multimedia Tools and Applications, vol. LXXXIII, p. 23901–23928, 2024, doi : https://doi.org/10.1007/s11042-023-16194-z
[14] A. Mondal, B. Mondal, A. Chakraborty, A. Kar, A. Biswas and A. B. Majumder, "Heart Disease Prediction Using Support Vector Machine and Artificial Neural Network," Artificial Intelligence and Applications , pp. 1-7, 2023, doi : https://doi.org/10.47852/bonviewAIA3202823
[15] U. Daharwal, I. Singh and G. Khekare, "Comparison of Machine Learning Algorithms for Heart Disease Prediction," Procedia Computer Science, vol. CCLX, pp. 12-21, 2025, doi : https://doi.org/10.1016/j.procs.2025.03.172
[16] P. Shinde, M. Sanghavi and T. A. Tran, "A Survey on Machine Learning Techniques for Heart Disease Prediction," SN Computer Science, vol. VI, p. 334, 2025, doi : http://dx.doi.org/10.1007/s42979-025-03860-2
[17] S. D. P. U. and A. , "Prediction of Heart Disease Using K-Nearest Neighbour Algorithm in Comparison with Support Vector Machine Algorithm," in International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS), Semarang, 2022, doi : http://dx.doi.org/10.1109/MACS56771.2022.10023034
Copyright (c) 2025 Johannes Kristian Nainggolan, Ferdinand Sinaga, Andriani M. Sitorus, Anisa Khairia, Bayu Angga Wijaya, S.Kom., M.Kom.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.







